The metalangage Ramz means the set of letters, numbers and symbols, the first version of Ramz is " the universal statement" executing the actual state of hardware" for the following reasons :
Symbols of Ramz I
Letters of Ramz I
oriented vectorial chain of arabic letters as token from the following alphanumeric matrice in decimal code ( matrice n x 7).
@1 @2 @3 @4 @5 @6 @7
@8 @9 @10 @11 @12 @13 @14
@15 @16 @17 @18 @19 @20 @21
@22 @23 @24 @25 @26 @27 @28
Corresponding to the decimal code below ;
1 2 3 4 5 6 7
8 9 10 20 30 40 50
60 70 80 90 100 200 300
400 500 600 700 800 900 1000
Alphanumeric vectors
V1 = ( @1, @5, @9, @13, @17, @21, @25)
V2 = ( @2, @6, @10, @14, @18, @22, @26)
V3 = ( @3, @7, @11 @15, @19, @23, @27)
V5 = ( @4, @8, @12, @16, @20, @24, @28)
Ponderation of column vectors
@1 @5 @9 @13 @17 @21 @25
@2 @6 @10 @14 @18 @22 @26
@3 @7 @11 @15 @19 @23 @27
@4 @8 @12 @16 @20 @24 @28
| | | | | | |
7/7 6/7 5/7 4/7 3/7 2/7 1/7
Diagonal arrangement
(@1, @10, @19, @28) 111 + 1000 = 1111
(@2, @11, @20) 222
(@3, @12, @21) 333
(@4, @13, @22) 444
(@5, @14, @23) 555
(@16,@15, @24) 666
(@7, @16, @25) 777
(@8, @17, @26) 888
(@9, @13, @27) 999
Absolute position = base 10 (decimal) as from the array
Abs-position 1th 2° 3° 4° 5° 6° 7° 8° 9°
@1 @2 @3 @4 @5 @6 @7 @8 @9
@10 @11 @12 @13 @14 @15 @16 @17 @18
@19 @20 @21 @22 @23 @24 @25 @26 @27
Relative-position 9° 8° 7° 6° 5° 4° 3° 2° 1°
Directional coordinates
The Ramz I chain of characters has 64 (lenght) symbols, it is a periodical function of 64 characters, each character in the the chain has it's absolute and relative position and ponderation, the iriginal of Ramz is that he allows also a decimal code of the character which destingish it from the ASCII code were is limited to the function ASC and CHAR, here in Ramz we have also other parameters for recursivity, so Ramz considers the direction of a chain is converted in decimal code (numeric).
That shows a real interaction between alphabetic and numeric si the following function are consudered :
suppose the numeric decimal value of value of Ramz-chain is N
if N(mod4) = 1 then N--- V1
if N(mod4) = 0 then N--- V2
if N(mod4) = 2 then N--- V3
if N(mod4) = 3 then N----V4
Time coordinates
the Ramz-chain has also other parameters of the time localization
N(mod 24) ---------- sideral hour
N(mod 7 ) ---------- days begining from sunday
N(mod 30) ---------- the n° day of the month
N(mod 12) ---------- the n° month from begining of the year
Matricial coordinates
if N(mod 7) = 1 then M(N) = 6x6
if N(mod 7) = 2 then M(N) = 7x7
if N(mod 7) = 3 then M(N) = 8x8
if N(mod 7) = 4 then M(N) = 9x9
if N(mod 7) = 5 then M(N) = 3x3
if N(mod 7) = 6 then M(N) = 4x4
if N(mod 7) = 7 then M(N) = 5x5
Letters durations
@4 00.00.00 00.12.51 @2 06.00.00 06.12.15
@8 00.12.02 00.25.44 @6 06.12.52 06.25.44
@12 00.25.44 01.08.34 @10 06.25.45 07.08.24
@16 01.08.35 01.12.26 @14 07.08.35 07.21.26
@20 01.21.27 02.24.17 @18 07.21.27 08.04.17
@24 02.04.18 02.17.09 @22 08.04.18 08.17.09
@28 02.17.14 03.00.00 @26 08.17.09 09.00.00
@1 03.00.00 03.12.51 @3 09.00.00 09.12.51
@5 03.12.52 03.25.44 @7 09.13.52 09.25.44
@9 03.25.45 04.08.34 @11 10.08.35 10.08.34
@13 04.08.35 04.31.26 @15 10.08.35 10.21.26
@17 04.21.27 03.04.17 @19 10.21.27 11.04.17
@21 05.04.18 05.17.29 @23 11.04.18 11.17.09
@25 05.17.12 06.00.00 @27 11.17.10 12.00.00
ALPHA SOUND
7/7
@1 la 440,000/142 la 440.000/142
@2 si 493,883/127 sol 391,995/159
@3 do 523,251/119 fa 349,228/179
@4 re 587,330/106 mi 329,628/190
6/7
@5 mi 659,255/95 re 293,665/213
@6 fa 698,457/89 do 261,626/239
@7 sol 783,991/80 si 246,942/253
@8 la 880,000/71 la 220,000/284
5/7
@9 si 987,767/63 sol 195,998/319
@10 do 1046,502/60 fa 174,614/358
@11 re 1174,659/53 mi 164,814/.379
@12 mi 1318,510/47 re 146,832/426
4/7
@13 fa 1396,913/45 do 130,813/478
@14 sol 1567,982/40 si 123,471/506
@15 la 1760,000/36 la 110,000/568
@16 si 1975,533/32 sol 97,999/638
3/7
@17 do 2093,004/30 fa 87,307/716
@18 re 2349,318/27 mi 82,407/758
@19 mi 2637,021/24 re 73,416/851
@20 fa 2793/826/22 do 65,406/956
2/7
@21 sol 3135,963/20 si 61,735/1012
@22 la 3520,000/18 la 55,000/1136
@23 si 3951,066/16 sol 48,999/1276
@24 do fa 43,654/1432
1/7
@25 re mi 41,203/1517
@26 mi re 36,708/1703
@27 fa do 32,703/1911
@28 sol si 30,868/2025
___
V1 = @1 @5 @9 @13 @17 @21 @25
la mi si fa do sol re
la re sol do fa si mi
___
V2 = @2 @6 @10 @14 @18 @22 @26
si fa do sol re la mi
sol do fa si sol do re
___
V3 = @3 @7 @11 @15 @19 @23 @27
do sol re la mi si fa
fa si mi la re sol do
___
V4 = @4 @8 @12 @16 @20 @24 @28
re la mi si fa do sol
mi la re sol do fa si
Symbols of Ramz I
Letters of Ramz I
oriented vectorial chain of arabic letters as token from the following alphanumeric matrice in decimal code ( matrice n x 7).
@1 @2 @3 @4 @5 @6 @7
@8 @9 @10 @11 @12 @13 @14
@15 @16 @17 @18 @19 @20 @21
@22 @23 @24 @25 @26 @27 @28
Corresponding to the decimal code below ;
1 2 3 4 5 6 7
8 9 10 20 30 40 50
60 70 80 90 100 200 300
400 500 600 700 800 900 1000
Alphanumeric vectors
V1 = ( @1, @5, @9, @13, @17, @21, @25)
V2 = ( @2, @6, @10, @14, @18, @22, @26)
V3 = ( @3, @7, @11 @15, @19, @23, @27)
V5 = ( @4, @8, @12, @16, @20, @24, @28)
Ponderation of column vectors
@1 @5 @9 @13 @17 @21 @25
@2 @6 @10 @14 @18 @22 @26
@3 @7 @11 @15 @19 @23 @27
@4 @8 @12 @16 @20 @24 @28
| | | | | | |
7/7 6/7 5/7 4/7 3/7 2/7 1/7
Diagonal arrangement
(@1, @10, @19, @28) 111 + 1000 = 1111
(@2, @11, @20) 222
(@3, @12, @21) 333
(@4, @13, @22) 444
(@5, @14, @23) 555
(@16,@15, @24) 666
(@7, @16, @25) 777
(@8, @17, @26) 888
(@9, @13, @27) 999
Absolute position = base 10 (decimal) as from the array
Abs-position 1th 2° 3° 4° 5° 6° 7° 8° 9°
@1 @2 @3 @4 @5 @6 @7 @8 @9
@10 @11 @12 @13 @14 @15 @16 @17 @18
@19 @20 @21 @22 @23 @24 @25 @26 @27
Relative-position 9° 8° 7° 6° 5° 4° 3° 2° 1°
Directional coordinates
The Ramz I chain of characters has 64 (lenght) symbols, it is a periodical function of 64 characters, each character in the the chain has it's absolute and relative position and ponderation, the iriginal of Ramz is that he allows also a decimal code of the character which destingish it from the ASCII code were is limited to the function ASC and CHAR, here in Ramz we have also other parameters for recursivity, so Ramz considers the direction of a chain is converted in decimal code (numeric).
That shows a real interaction between alphabetic and numeric si the following function are consudered :
suppose the numeric decimal value of value of Ramz-chain is N
if N(mod4) = 1 then N--- V1
if N(mod4) = 0 then N--- V2
if N(mod4) = 2 then N--- V3
if N(mod4) = 3 then N----V4
Time coordinates
the Ramz-chain has also other parameters of the time localization
N(mod 24) ---------- sideral hour
N(mod 7 ) ---------- days begining from sunday
N(mod 30) ---------- the n° day of the month
N(mod 12) ---------- the n° month from begining of the year
Matricial coordinates
if N(mod 7) = 1 then M(N) = 6x6
if N(mod 7) = 2 then M(N) = 7x7
if N(mod 7) = 3 then M(N) = 8x8
if N(mod 7) = 4 then M(N) = 9x9
if N(mod 7) = 5 then M(N) = 3x3
if N(mod 7) = 6 then M(N) = 4x4
if N(mod 7) = 7 then M(N) = 5x5
Letters durations
@4 00.00.00 00.12.51 @2 06.00.00 06.12.15
@8 00.12.02 00.25.44 @6 06.12.52 06.25.44
@12 00.25.44 01.08.34 @10 06.25.45 07.08.24
@16 01.08.35 01.12.26 @14 07.08.35 07.21.26
@20 01.21.27 02.24.17 @18 07.21.27 08.04.17
@24 02.04.18 02.17.09 @22 08.04.18 08.17.09
@28 02.17.14 03.00.00 @26 08.17.09 09.00.00
@1 03.00.00 03.12.51 @3 09.00.00 09.12.51
@5 03.12.52 03.25.44 @7 09.13.52 09.25.44
@9 03.25.45 04.08.34 @11 10.08.35 10.08.34
@13 04.08.35 04.31.26 @15 10.08.35 10.21.26
@17 04.21.27 03.04.17 @19 10.21.27 11.04.17
@21 05.04.18 05.17.29 @23 11.04.18 11.17.09
@25 05.17.12 06.00.00 @27 11.17.10 12.00.00
ALPHA SOUND
7/7
@1 la 440,000/142 la 440.000/142
@2 si 493,883/127 sol 391,995/159
@3 do 523,251/119 fa 349,228/179
@4 re 587,330/106 mi 329,628/190
6/7
@5 mi 659,255/95 re 293,665/213
@6 fa 698,457/89 do 261,626/239
@7 sol 783,991/80 si 246,942/253
@8 la 880,000/71 la 220,000/284
5/7
@9 si 987,767/63 sol 195,998/319
@10 do 1046,502/60 fa 174,614/358
@11 re 1174,659/53 mi 164,814/.379
@12 mi 1318,510/47 re 146,832/426
4/7
@13 fa 1396,913/45 do 130,813/478
@14 sol 1567,982/40 si 123,471/506
@15 la 1760,000/36 la 110,000/568
@16 si 1975,533/32 sol 97,999/638
3/7
@17 do 2093,004/30 fa 87,307/716
@18 re 2349,318/27 mi 82,407/758
@19 mi 2637,021/24 re 73,416/851
@20 fa 2793/826/22 do 65,406/956
2/7
@21 sol 3135,963/20 si 61,735/1012
@22 la 3520,000/18 la 55,000/1136
@23 si 3951,066/16 sol 48,999/1276
@24 do fa 43,654/1432
1/7
@25 re mi 41,203/1517
@26 mi re 36,708/1703
@27 fa do 32,703/1911
@28 sol si 30,868/2025
___
V1 = @1 @5 @9 @13 @17 @21 @25
la mi si fa do sol re
la re sol do fa si mi
___
V2 = @2 @6 @10 @14 @18 @22 @26
si fa do sol re la mi
sol do fa si sol do re
___
V3 = @3 @7 @11 @15 @19 @23 @27
do sol re la mi si fa
fa si mi la re sol do
___
V4 = @4 @8 @12 @16 @20 @24 @28
re la mi si fa do sol
mi la re sol do fa si
Aucun commentaire:
Enregistrer un commentaire